Search results
Results from the WOW.Com Content Network
A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity.
Example of airborne and structure-borne transmission of sound, where Lp is sound pressure level, A is attenuation, P is acoustical pressure, S is the area of the wall [m²], and τ is the transmission coefficient. Acoustic transmission is the transmission of sounds through and between materials, including air, wall, and musical instruments.
For instance, attenuators used with coaxial lines would be the unbalanced form while attenuators for use with twisted pair are required to be the balanced form. Four fundamental attenuator circuit diagrams are given in the figures on the left. Since an attenuator circuit consists solely of passive resistor elements, it is both linear and ...
An acoustic waveguide is a physical structure for guiding sound waves. Sound in an acoustic waveguide behaves like electromagnetic waves on a transmission line. Waves on a string, like the ones in a tin can telephone, are a simple example of an acoustic waveguide. Another example are pressure waves in the pipes of an organ.
The attenuation coefficient is = / (), following Stokes' law (sound attenuation). This effect is more intense at elevated frequencies and is much greater in air (where attenuation occurs on a characteristic distance α − 1 {\displaystyle \alpha ^{-1}} ~10 cm at 1 MHz) than in water ( α − 1 {\displaystyle \alpha ^{-1}} ~100 m at 1 MHz).
In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates. Hearing protectors help reduce acoustic flux from flowing into the ears.