Search results
Results from the WOW.Com Content Network
The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. [4]
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
Prolog is particularly useful for symbolic reasoning, database and language parsing applications. Artificial Intelligence Markup Language (AIML) [11] is an XML dialect [12] for use with Artificial Linguistic Internet Computer Entity (A.L.I.C.E.)-type chatterbots. Planner is a hybrid between procedural and logical languages. It gives a ...
spaCy (/ s p eɪ ˈ s iː / spay-SEE) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. [3] [4] The library is published under the MIT license and its main developers are Matthew Honnibal and Ines Montani, the founders of the software company Explosion.
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program .
Natural-language processing is also the name of the branch of computer science, artificial intelligence, and linguistics concerned with enabling computers to engage in communication using natural language(s) in all forms, including but not limited to speech, print, writing, and signing.
Spark NLP for Healthcare is a commercial extension of Spark NLP for clinical and biomedical text mining. [10] It provides healthcare-specific annotators, pipelines, models, and embeddings for clinical entity recognition, clinical entity linking, entity normalization, assertion status detection, de-identification, relation extraction, and spell checking and correction.
Cyber security companies are adopting neural networks, machine learning, and natural language processing to improve their systems. [51] Applications of AI in cyber security include: Network protection: Machine learning improves intrusion detection systems by broadening the search beyond previously identified threats.