enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  3. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  4. Reduced cost - Wikipedia

    en.wikipedia.org/wiki/Reduced_cost

    Given a system minimize subject to ,, the reduced cost vector can be computed as , where is the dual cost vector. It follows directly that for a minimization problem, any non- basic variables at their lower bounds with strictly negative reduced costs are eligible to enter that basis, while any basic variables must have a reduced cost that is ...

  5. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.

  6. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Minimize subject to the algebraic constraints = () Depending upon the type of direct method employed, the size of the nonlinear optimization problem can be quite small (e.g., as in a direct shooting or quasilinearization method), moderate (e.g. pseudospectral optimal control [ 11 ] ) or may be quite large (e.g., a direct collocation method [ 12

  7. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    The idea is to reduce this problem to a network flow problem. Let G′ = (V′ = A ∪ B, E′ = E). Assign the capacity of all the edges in E′ to 1. Add a source vertex s and connect it to all the vertices in A′ and add a sink vertex t and connect all vertices inside group B′ to this vertex. The capacity of all the new edges is 1 and ...

  8. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0.. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T.

  9. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    The equality constraint functions :, =, …,, are affine transformations, that is, of the form: () =, where is a vector and is a scalar. The feasible set C {\displaystyle C} of the optimization problem consists of all points x ∈ D {\displaystyle \mathbf {x} \in {\mathcal {D}}} satisfying the inequality and the equality constraints.

  1. Related searches minimize subject to constraints calculator california free shipping price

    constrained optimization problemsinequality constraints
    constrained optimization examples