Search results
Results from the WOW.Com Content Network
These organisms perform photosynthesis through organelles called chloroplasts and are believed to have originated about 2 billion years ago. [1] Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of endosymbiosis with cyanobacteria that gradually lost the genes required to be free-living.
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
Cyanobacteria, which are prokaryotic organisms which carry out oxygenic photosynthesis, occupy many environmental conditions, including fresh water, seas, soil, and lichen. Cyanobacteria carry out plant-like photosynthesis because the organelle in plants that carries out photosynthesis is derived from an [4] endosymbiotic cyanobacterium. [5]
Photosynthesis is the main means by which plants, algae and many bacteria produce organic compounds and oxygen from carbon dioxide and water (green arrow). An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.
Phytoplankton (/ ˌ f aɪ t oʊ ˈ p l æ ŋ k t ə n /) are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems.The name comes from the Greek words φυτόν (phyton), meaning 'plant', and πλαγκτός (planktos), meaning 'wanderer' or 'drifter'.
These are flattened sacs called thylakoids where photosynthesis is performed. [ 14 ] [ 15 ] Photoautotrophic eukaryotes such as red algae , green algae and plants perform photosynthesis in chlorophyllic organelles that are thought to have their ancestry in cyanobacteria, acquired long ago via endosymbiosis.
Nuclear genes (in the cell nucleus of a plant) encode the vast majority of plastid proteins; and the expression of nuclear and plastid genes is co-regulated to coordinate the development and differention of plastids. Many plastids, particularly those responsible for photosynthesis, possess numerous internal membrane layers.
This depletes a plant's free phosphate supply, which indirectly stimulates chloroplast starch synthesis. [167] While linked to low photosynthesis rates, the starch grains themselves may not necessarily interfere significantly with the efficiency of photosynthesis, [168] and might simply be a side effect of another photosynthesis-depressing ...