Search results
Results from the WOW.Com Content Network
In models involving many input variables, sensitivity analysis is an essential ingredient of model building and quality assurance and can be useful to determine the impact of a uncertain variable for a range of purposes, [4] including: Testing the robustness of the results of a model or system in the presence of uncertainty.
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [1] [2] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
This allows testing the sensitivity/risk associated with one uncertainty/variable. For example, if a decision maker needs to visually compare 100 budgetary items, and wishes to identify the ten items one should focus on, it would be nearly impossible to do using a standard bar graph.
EE is applied to identify non-influential inputs for a computationally costly mathematical model or for a model with a large number of inputs, where the costs of estimating other sensitivity analysis measures such as the variance-based measures is not affordable. Like all screening, the EE method provides qualitative sensitivity analysis ...
The true-positive rate is also known as sensitivity or probability of detection. [1] The false-positive rate is also known as the probability of false alarm [1] and equals (1 − specificity). The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR and FPR) as the ...
One desired outcome is to summarize results in a concise and visually coherent form, using visualization tools such as tornado diagrams and sensitivity analysis graphs. At present, TEA is most commonly used to analyze technologies in the chemical, bioprocess, petroleum, energy, and similar industries. This article focuses on these areas of ...
The one-factor-at-a-time method, [1] also known as one-variable-at-a-time, OFAT, OF@T, OFaaT, OVAT, OV@T, OVaaT, or monothetic analysis is a method of designing experiments involving the testing of factors, or causes, one at a time instead of multiple factors simultaneously.