Search results
Results from the WOW.Com Content Network
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample ( 10 8 + 4 , 10 8 + 7 , 10 8 + 13 , 10 8 + 16 ), which gives rise to the same estimated variance as the first sample.
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
A conventional choice is to add noise with a standard deviation of / for a sample size n; this noise is often drawn from a Student-t distribution with n-1 degrees of freedom. [47] This results in an approximately-unbiased estimator for the variance of the sample mean. [48]
When estimating a scale parameter, such as when using an L-estimator as a robust measures of scale, such as to estimate the population variance or population standard deviation, one generally must multiply by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.