enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  3. Rules extraction system family - Wikipedia

    en.wikipedia.org/wiki/Rules_extraction_system_family

    The rules extraction system (RULES) family is a family of inductive learning that includes several covering algorithms. This family is used to build a predictive model based on given observation. It works based on the concept of separate-and-conquer to directly induce rules from a given training set and build its knowledge repository.

  4. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...

  5. Data Science and Predictive Analytics - Wikipedia

    en.wikipedia.org/wiki/Data_Science_and...

    The significantly reorganized revised edition of the book (2023) [2] expands and modernizes the presented mathematical principles, computational methods, data science techniques, model-based machine learning and model-free artificial intelligence algorithms. The 14 chapters of the new edition start with an introduction and progressively build ...

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.

  7. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    Where represents the learning rate, represents the input of neuron i, and y is the output of the neuron. It has been shown that Hebb's rule in its basic form is unstable. Oja's Rule, BCM Theory are other learning rules built on top of or alongside Hebb's Rule in the study of biological neurons.

  8. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  9. Learning classifier system - Wikipedia

    en.wikipedia.org/wiki/Learning_classifier_system

    A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.