Search results
Results from the WOW.Com Content Network
Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall. [ 1 ]
Permeability is affected by the penetrant size. Larger gas molecules have a lower diffusion coefficient. The polymer chain flexibility and free volume in the polymer of the membrane material influence the diffusion coefficient, as the space within the permeable membrane must be large enough for the gas molecules to diffuse across.
See also Knudsen diffusion and constrictivity. For example, measurement of permeability through sandstones and shales yielded values from 9.0×10 −19 m 2 to 2.4×10 −12 m 2 for water and between 1.7×10 −17 m 2 to 2.6×10 −12 m 2 for nitrogen gas. [11]
In fluid dynamics, the Knudsen equation is used to describe how gas flows through a tube in free molecular flow. When the mean free path of the molecules in the gas is larger than or equal to the diameter of the tube , the molecules will interact more often with the walls of the tube than with each other.
The pressure drop across the sample and the flow rate are measured and permeability is calculated using Darcy's law. Normally, either nitrogen or brine can be used as a fluid. When high rates of flow can be maintained, the results are comparable. At low rates, air permeability will be higher than brine permeability. This is because gas does not ...
The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.
Knudsen flow has been defined as the transitional range between viscous flow and molecular flow, which is significant in the medium vacuum range where λ ≈ d. [ 5 ] Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn ...
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%.