Search results
Results from the WOW.Com Content Network
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
where i is the index of summation; a i is an indexed variable representing each term of the sum; m is the lower bound of summation, and n is the upper bound of summation. The "i = m" under the summation symbol means that the index i starts out equal to m. The index, i, is incremented by one for each successive term, stopping when i = n. [b]
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
the Christoffel symbols that describe components of a metric connection; the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...
The Miscellaneous Mathematical Symbols-B block (U+2980–U+29FF) contains miscellaneous mathematical symbols, including brackets, angles, and circle symbols. Miscellaneous Mathematical Symbols-B [1] Official Unicode Consortium code chart (PDF)
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.