enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bright-field microscopy - Wikipedia

    en.wikipedia.org/wiki/Bright-field_microscopy

    Bright-field microscopes have low apparent optical resolution due to the blur of out-of-focus material; Bright-field microscopes typically produce low contrast with most biological samples, as few absorb light to a great extent. Samples that are naturally colorless and transparent cannot be seen well, e.g. many types of mammalian cells.

  3. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    The same cells imaged with traditional bright-field microscopy (left), and with phase-contrast microscopy (right) Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope , as exemplified in the figure.

  4. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    The advantages of these methods compared to normal absorption-contrast X-ray imaging is higher contrast for low-absorbing materials (because phase shift is a different mechanism than absorption) and a contrast-to-noise relationship that increases with spatial frequency (because many phase-contrast techniques detect the first or second ...

  5. Interference colour chart - Wikipedia

    en.wikipedia.org/wiki/Interference_colour_chart

    Michel-Lévy interference colour chart issued by Zeiss Microscopy. In optical mineralogy, an interference colour chart, also known as the Michel-Levy chart, is a tool first developed by Auguste Michel-Lévy to identify minerals in thin section using a petrographic microscope.

  6. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...

  7. Transillumination - Wikipedia

    en.wikipedia.org/wiki/Transillumination

    In microscopy transillumination refers to the illumination of a sample by transmitted light. In its most basic form it generates a bright field image, and is commonly used with transillumination techniques such as phase contrast and differential interference contrast microscopy.

  8. Parfocal lens - Wikipedia

    en.wikipedia.org/wiki/Parfocal_lens

    Parfocal microscope objectives stay in focus when magnification is changed; i.e., if the microscope is switched from a lower power objective (e.g., 10×) to a higher power objective (e.g., 40×), the object stays in focus. Most modern bright-field microscopes are parfocal.

  9. Chlorophyll fluorescence - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_fluorescence

    Confocal microscope images of a tomato leaf from Solanum lycopersicum. Brightfield DIC image showing guard cells and pavement cells (above). Same region showing Chlorophyll A autofluorescence with 440 nm laser excitation and far red emission (below). Microscopic images of a moss leaf from Plagiomnium undulatum.