Search results
Results from the WOW.Com Content Network
Anion gap can be classified as either high, normal or, in rare cases, low. Laboratory errors need to be ruled out whenever anion gap calculations lead to results that do not fit the clinical picture. Methods used to determine the concentrations of some of the ions used to calculate the anion gap may be susceptible to very specific errors.
Result 1: if there is a normal anion gap acidosis, the (AG – 12) part of the equation will be close to zero, the delta ratio will be close to zero and there is no mixed acid–base disorder. Your calculations can stop here. A normal anion gap acidosis (NAGMA) has more to do with a change in [Cl −] or [HCO − 3] concentrations.
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle , [ 1 ] but sometimes the femoral artery in the groin or another site is used.
Since the partial pressure of carbon dioxide is much easier to obtain from measurement than carbonic acid, the Henry's law solubility constant – which relates the partial pressure of a gas to its solubility – for CO 2 in plasma is used in lieu of the carbonic acid concentration.
The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis). Base deficit with normal anion gap indicates loss of bicarbonate (e.g., diarrhea).
The anion gap can be increased due to relatively low levels of cations other than sodium and potassium (e.g. calcium or magnesium). An anion gap is usually considered to be high if it is over 12 mEq/L. High anion gap metabolic acidosis is typically caused by acid produced by the body. More rarely, it may be caused by ingesting methanol or ...
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
Measured osmolality is abbreviated "MO", calculated osmolarity is abbreviated "CO", and the osmolality gap is abbreviated "OG". [9] Clinically, the osmolar gap is used to detect the presence of an osmotically active particle that is not normally found in plasma, usually a toxic alcohol such as ethanol, methanol or isopropyl alcohol.