enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  4. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define () = to be the unique solution to the differential equation with initial value: ′ =, =, where ′ = denotes the derivative of y. Functional equation. The exponential function e x {\displaystyle e^{x}} is the unique function f with the multiplicative property f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} for all x , y ...

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  7. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The concept of a derivative in the sense of a tangent line is a very old one, familiar to ancient Greek mathematicians such as Euclid (c. 300 BC), Archimedes (c. 287–212 BC), and Apollonius of Perga (c. 262–190 BC). [5]

  9. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()