Search results
Results from the WOW.Com Content Network
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata.
Mapping [note 2] each equivalence E to the corresponding quotient automaton language L(A a,b,c,d / E) obtains the partially ordered set shown in the picture. Each node's language is denoted by a regular expression. The language may be recognized by quotient automata w.r.t. different equivalence relations, all of which are shown below the node.
These abstract machines are called automata. Automata comes from the Greek word (Αυτόματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory, [5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a ...
Therefore, formal language theory is a major application area of computability theory and complexity theory. Formal languages may be classified in the Chomsky hierarchy based on the expressive power of their generative grammar as well as the complexity of their recognizing automaton .
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science, under discrete mathematics (a section of mathematics and also of computer science). Automata comes from the Greek word αὐτόματα meaning "self-acting".
The Chomsky hierarchy in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a language's vocabulary (or alphabet) that are valid according to the language's syntax.
In theoretical computer science and formal language theory, a regular language (also called a rational language) [1] [2] is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages).
A DFA for that language has at least 16 states. In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if each of its transitions is uniquely determined by its source state and input symbol, and; reading an input symbol is required for each state transition.