Search results
Results from the WOW.Com Content Network
The RSA problem is defined as the task of taking e th roots modulo a composite n: recovering a value m such that c ≡ m e (mod n), where (n, e) is an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n.
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. [1] [2] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions.
Later, the 128-bit RSA SecurID algorithm was published as part of an open source library. [4] In the RSA SecurID authentication scheme, the seed record is the secret key used to generate one-time passwords. Newer versions also feature a USB connector, which allows the token to be used as a smart card-like device for securely storing certificates.
Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can decrypt this data. Since public-key algorithms tend to be much slower than symmetric-key algorithms, modern ...
In cryptography, PKCS #11 is a Public-Key Cryptography Standards that defines a C programming interface to create and manipulate cryptographic tokens that may contain secret cryptographic keys. It is often used to communicate with a Hardware Security Module or smart cards .
PBKDF2 is part of RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, specifically PKCS #5 v2.0, also published as Internet Engineering Task Force's RFC 2898. It supersedes PBKDF1, which could only produce derived keys up to 160 bits long. [2] RFC 8018 (PKCS #5 v2.1), published in 2017, recommends PBKDF2 for password hashing.
The PKCS #1 standard defines the mathematical definitions and properties that RSA public and private keys must have. The traditional key pair is based on a modulus, n, that is the product of two distinct large prime numbers, p and q, such that =.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.