Search results
Results from the WOW.Com Content Network
However, the two theories differ in the claims they make about the nature of the Specifier-Head-Complement (S-H-C) structure. In X-bar theory, S-H-C is a primitive, an example of this is Kayne's antisymmetry theory. In a Merge theory, S-H-C is derivative.
A 2-way merge, or a binary merge, has been studied extensively due to its key role in merge sort. An example of such is the classic merge that appears frequently in merge sort examples. The classic merge outputs the data item with the lowest key at each step; given some sorted lists, it produces a sorted list containing all the elements in any ...
Since Merge is an operation that combines two elements, a node under the Minimalist Program needs to be binary just as in the X-bar theory, although there is a difference between the theories in that under the X-bar theory, the directionality of branching is fixed in accordance with the principles-and-parameters model (not with the X-bar theory ...
Next, c, d, and e are read. A one-node tree is created for each and a pointer to the corresponding tree is pushed onto the stack. Creating a one-node tree. Continuing, a '+' is read, and it merges the last two trees. Merging two trees. Now, a '*' is read. The last two tree pointers are popped and a new tree is formed with a '*' as the root.
To merge two binomial trees of the same order, first compare the root key. Since 7>3, the black tree on the left (with root node 7) is attached to the grey tree on the right (with root node 3) as a subtree. The result is a tree of order 3. The operation of merging two heaps is used as a subroutine in most other operations. A basic subroutine ...
Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node may invalidate the balancing invariant. This can be fixed with rotations. The following is the join algorithms on different balancing schemes.
As a result, = + also holds for a full binary tree. To make a binary tree with a leaf node without its sibling, a single leaf node is removed from a full binary tree, then "one leaf node removed" and "one internal nodes with two children removed" so = + also holds. This relation now covers all non-empty binary trees.
To merge the two trees, apply a merge algorithm to the right spine of the left tree and the left spine of the right tree, replacing these two paths in two trees by a single path that contains the same nodes. In the merged path, the successor in the sorted order of each node from the left tree is placed in its right child, and the successor of ...