Search results
Results from the WOW.Com Content Network
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.
Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time Impulse noise (disambiguation) Specific impulse , the change in momentum per unit mass of propellant of a propulsion system
The newton-second (also newton second; symbol: N⋅s or N s) [1] is the unit of impulse in the International System of Units (SI). It is dimensionally equivalent to the momentum unit kilogram-metre per second (kg⋅m/s). One newton-second corresponds to a one-newton force applied for one second.
Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.