Search results
Results from the WOW.Com Content Network
Changes in temperature can also cause water to freeze. The forces produced by water freezing can be as great as 2.1 × 10 5 kPa, which can split rocks apart, wedge rocks upward in the soil, and heave and churn soil material. Chemical weathering: the principal agent is percolating rainwater charged with carbon dioxide from the atmosphere. Parent ...
Physical weathering, also called mechanical weathering or disaggregation, is the class of processes that causes the disintegration of rocks without chemical change. Physical weathering involves the breakdown of rocks into smaller fragments through processes such as expansion and contraction, mainly due to temperature changes.
Hydraulic action, most generally, is the ability of moving water (flowing or waves) to dislodge and transport rock particles.This includes a number of specific erosional processes, including abrasion, at facilitated erosion, such as static erosion where water leaches salts and floats off organic material from unconsolidated sediments, and from chemical erosion more often called chemical ...
Denudation incorporates the mechanical, biological, and chemical processes of erosion, weathering, and mass wasting. Denudation can involve the removal of both solid particles and dissolved material. These include sub-processes of cryofracture, insolation weathering, slaking, salt weathering, bioturbation, and anthropogenic impacts. [4]
Along with energy, the water chemistry will also affect the rock exposed to the erosion. Salt, calcium, and acid levels in the ocean have adverse effects on specific rock types. The chemical weathering due to wave processes is part of why wave pounding is so damaging. Wave pounding is not primarily caused by tectonic margins.
Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. [1]
The above figures simulate possible coastal aquifers. In reality, it is complex. Due to complex geology - non-uniform rock layers and weathering, both confined and unconfined aquifers can be found within a coast. It is possible to have multiple confined aquifers at the bottom and an unconfined aquifers at the top of a coast.
The formation of this harbour has occurred due to active erosional processes on an extinct shield volcano, whereby the sea has flooded the caldera, creating an inlet 16 km in length, with an average width of 2 km and a depth of −13 m relative to mean sea level at the 9 km point down the transect of the central axis. [5]