enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwartzian transform - Wikipedia

    en.wikipedia.org/wiki/Schwartzian_transform

    In computer programming, the Schwartzian transform is a technique used to improve the efficiency of sorting a list of items. This idiom [1] is appropriate for comparison-based sorting when the ordering is actually based on the ordering of a certain property (the key) of the elements, where computing that property is an intensive operation that should be performed a minimal number of times.

  3. Timsort - Wikipedia

    en.wikipedia.org/wiki/Timsort

    This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] and Swift. [10]

  4. Counting sort - Wikipedia

    en.wikipedia.org/wiki/Counting_sort

    Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...

  5. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).

  6. Cocktail shaker sort - Wikipedia

    en.wikipedia.org/wiki/Cocktail_shaker_sort

    The simplest form goes through the whole list each time: procedure cocktailShakerSort(A : list of sortable items) is do swapped := false for each i in 0 to length(A) − 1 do: if A[i] > A[i + 1] then // test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end if end for if not swapped then // we can exit the outer loop ...

  7. Integer sorting - Wikipedia

    en.wikipedia.org/wiki/Integer_sorting

    In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]

  8. Block sort - Wikipedia

    en.wikipedia.org/wiki/Block_Sort

    Once every A and B block of every A and B subarray have been merged for that level of the merge sort, the values in that buffer must be sorted to restore their original order, so an insertion sort must be applied. The values in the buffers are then redistributed to their first sorted position within the array. This process repeats for each ...

  9. Pigeonhole sort - Wikipedia

    en.wikipedia.org/wiki/Pigeonhole_sort

    The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.