Search results
Results from the WOW.Com Content Network
Iron overload (also known as haemochromatosis or hemochromatosis) is the abnormal and increased accumulation of total iron in the body, leading to organ damage. [1] The primary mechanism of organ damage is oxidative stress, as elevated intracellular iron levels increase free radical formation via the Fenton reaction.
Haemochromatosis is protean in its manifestations, i.e., often presenting with signs or symptoms suggestive of other diagnoses that affect specific organ systems.Many of the signs and symptoms below are uncommon, and most patients with the hereditary form of haemochromatosis do not show any overt signs of disease nor do they have premature morbidity, if they are diagnosed early, but, more ...
Hemochromatosis type 4 is a hereditary iron overload disorder that affects ferroportin, an iron transport protein needed to export iron from cells into circulation. [1] Although the disease is rare, it is found throughout the world and affects people from various ethnic groups.
For instance, a severe form of iron overload, juvenile hemochromatosis, is a result of severe hepcidin deficiency. The majority of cases are caused by mutations in the hemojuvelin gene (HJV or RGMc/repulsive guidance molecule c). The exceptions, people who have mutations in the gene for ferroportin, prove the rule: these people have plenty of ...
Treatment for hemochromatosis type 3 may include reducing iron levels by removing blood (phlebotomy), iron chelation therapy, diet changes, and treatment for complications of the disease. The purpose of the treatment is to reduce the amount of iron in the body to normal levels, prevent or delay organ damage from excess iron, and maintain normal ...
The presence of hemochromatosis may be discovered incidentally on blood testing, or a diagnosis suspected based on symptoms may be supported or ruled out by blood testing. Elevated serum ferritin , an indicator of blood iron levels, and transferrin saturation , which is involved with absorption of iron from the gut, are very common.
Section of liver stained with Perls Prussian blue, showing iron accumulations (blue) consistent with homozygous genetic hemochromatosis. Perls's method is used to indicate "non-heme" iron in tissues such as ferritin and hemosiderin, [6] the procedure does not stain iron that is bound to porphyrin forming heme such as hemoglobin and myoglobin. [2]
This finding helps in the early diagnosis of hereditary hemochromatosis, especially while serum ferritin still remains low. The retained iron in hereditary hemochromatosis is primarily deposited in parenchymal cells, with reticuloendothelial cell accumulation occurring very late in the disease.