Search results
Results from the WOW.Com Content Network
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
The erg is a unit of energy equal to 10 −7 joules (100 nJ). It is not an SI unit, instead originating from the centimetre–gram–second system of units (CGS). Its name is derived from ergon (ἔργον), a Greek word meaning 'work' or 'task'. [1] An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre.
Two of the base SI units and 17 of the derived units are named after scientists. [2] 28 non-SI units are named after scientists. By this convention, their names are immortalised. As a rule, the SI units are written in lowercase letters, but symbols of units derived from the name of a person begin with a capital letter.
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
An ABSOLUTE UNIT is a UNIT of measurement that can be defined, and is not arbitrary. I appreciated the consistency of all three theme answers leading to plural UNITS. Thank you, Stella, for this ...
PV work is often measured in units of litre-atmospheres where 1 L·atm = 101.325 J. However, the litre-atmosphere is not a recognized unit in the SI system of units, which measures P in pascals (Pa), V in m 3, and PV in joules (J), where 1 J = 1 Pa·m 3. PV work is an important topic in chemical thermodynamics.
Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat flow per unit time per unit surface area W/m 2: M T −3: Illuminance: E v: Wavelength-weighted luminous flux per unit surface area lux (lx = cd⋅sr/m 2) L −2 J: Impedance: Z: Resistance to an alternating current of a given frequency ...