Search results
Results from the WOW.Com Content Network
In 3-dimensional orthogonal coordinate systems are 3: Cartesian, cylindrical, and spherical. Expressing the Navier–Stokes vector equation in Cartesian coordinates is quite straightforward and not much influenced by the number of dimensions of the euclidean space employed, and this is the case also for the first-order terms (like the variation ...
In spherical coordinates ( r , θ , φ ), r is the radial distance from the origin, θ is the zenith angle and φ is the azimuthal angle. In axisymmetric flow, with θ = 0 the rotational symmetry axis, the quantities describing the flow are again independent of the azimuth φ. The flow velocity components u r and u θ are related to the Stokes ...
The Navier–Stokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...
In spherical coordinates in N dimensions, ... An example of the usage of the vector Laplacian is the Navier-Stokes equations for a Newtonian incompressible flow: ...
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]
In the calculation of the Stokes' law for the drag that a viscous fluid exerts on a small spherical particle, the velocity distribution obeys Navier–Stokes equations neglecting inertia, i.e., =, = +,
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]