enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  3. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  4. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

  5. Bhattacharyya distance - Wikipedia

    en.wikipedia.org/wiki/Bhattacharyya_distance

    In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient , which is a measure of the amount of overlap between two statistical samples or populations.

  6. Stein's method - Wikipedia

    en.wikipedia.org/wiki/Stein's_method

    Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...

  7. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.

  8. Wasserstein metric - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_metric

    By carefully writing the above equations as matrix equations, we obtain its dual problem: [15] {, () + () + (,) and by the duality theorem of linear programming, since the primal problem is feasible and bounded, so is the dual problem, and the minimum in the first problem equals the maximum in the second problem.

  9. Nearest neighbour distribution - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_distribution

    In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...

  1. Related searches how to calculate lapping distance formula statistics equation solver examples

    how to calculate distancedistance between two variables
    statistical distance formula