Search results
Results from the WOW.Com Content Network
A use for symbiotic bacteria is in paratransgenesis for controlling important vectors for disease, such as the transmission of Chagas disease by Triatome kissing bugs. Symbiotic bacteria in legume roots provide the plants with ammonia in exchange for the plants' carbon and a protected home.
Bacteria that do associate with plants include the actinomycete, Frankia, which form symbiotic root nodules in actinorhizal plants, although these bacteria have a much broader host range, implying the association is less specific than in legumes. [17]
Rhizobacteria are root-associated bacteria that can have a detrimental (parasitic varieties), neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants . Rhizobacteria are often referred to as plant growth-promoting ...
Bacterial tree pathogens and diseases (1 C, 20 P) Pages in category "Bacterial plant pathogens and diseases" The following 84 pages are in this category, out of 84 total.
This category includes economically significant plant diseases and the organisms that cause them including, fungi, bacteria, protists and viruses. For more information on plant pathology see phytopathology. For insects that transmit plant pathogens see Insect vectors of plant pathogens.
Plants that contribute to N2 fixation include the legume family – Fabaceae – with taxa such as kudzu, clovers, soybeans, alfalfa, lupines, peanuts, and rooibos.They contain symbiotic bacteria called rhizobia within the nodules, producing nitrogen compounds that help the plant to grow and compete with other plants.
The Rhizobia-Legume symbiosis (bacteria-plant endosymbiosis) is a prime example of this modality. [21] The Rhizobia-legume symbiotic relationship is important for processes such as the formation of root nodules. It starts with flavonoids released by the legume host, which causes the rhizobia species (endosymbiont) to activate its Nod genes. [21]
Systemic endophytes are defined as organisms that live within plant tissues for the entirety of its life cycle and participate in a symbiotic relationship without causing disease or harm to the plant at any point. Additionally, systemic endophytes concentrations and diversity do not change in a host with changing environmental conditions. [40]