Search results
Results from the WOW.Com Content Network
The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.
class Foo {int bar (int a, int b) {return (a * 2) + b;} /* Overloaded method with the same name but different set of arguments */ int bar (int a) {return a * 2;}} A method is called using . notation on an object, or in the case of a static method, also on the name of a class.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
A Brauer chain or star addition chain is an addition chain in which each of the sums used to calculate its numbers uses the immediately previous number. A Brauer number is a number for which a Brauer chain is optimal.
Typically, general-purpose microprocessors do not implement integer arithmetic operations using saturation arithmetic; instead, they use the easier-to-implement modular arithmetic, in which values exceeding the maximum value "wrap around" to the minimum value, like the hours on a clock passing from 12 to 1.
This calculator program has accepted input in infix notation, and returned the answer , ¯. Here the comma is a decimal separator. Here the comma is a decimal separator. Infix notation is a method similar to immediate execution with AESH and/or AESP, but unary operations are input into the calculator in the same order as they are written on paper.
For example, when 6 and 7 are added to make 13, the "3" is written to the same column and the "1" is carried to the left. When used in subtraction the operation is called a borrow . Carrying is emphasized in traditional mathematics , while curricula based on reform mathematics do not emphasize any specific method to find a correct answer.
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number (with the smaller exponent) is shifted right by three digits, and one then proceeds with the usual addition method: 123456.7 = 1.234567 × 10^5 101.7654 = 1.017654 × 10^2 = 0.001017654 × 10^5