Search results
Results from the WOW.Com Content Network
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
If, on the other hand, the ranks of these two matrices are equal, the system must have at least one solution; since in an underdetermined system this rank is necessarily less than the number of unknowns, there are indeed an infinitude of solutions, with the general solution having k free parameters where k is the difference between the number ...
Some of the related mathematical skills necessary for solving word problems are mathematical vocabulary and reading comprehension. This can again be connected to the example above. With an understanding of the word "spent" and the concept of subtraction, it can be deduced that this word problem is relating the two. [2]
The s-step Adams–Bashforth method has order s, while the s-step Adams–Moulton method has order + (Hairer, Nørsett & Wanner 1993, §III.2). These conditions are often formulated using the characteristic polynomials ρ ( z ) = z s + ∑ k = 0 s − 1 a k z k and σ ( z ) = ∑ k = 0 s b k z k . {\displaystyle \rho (z)=z^{s}+\sum _{k=0}^{s-1 ...
In this problem, each variable corresponds to an hour that teacher must spend with cohort , the assignment to the variable specifies whether that hour is the first or the second of the teacher's available hours, and there is a 2-satisfiability clause preventing any conflict of either of two types: two cohorts assigned to a teacher at the same ...
Linear programming problems are optimization problems in which the objective function and the constraints are all linear. In the primal problem, the objective function is a linear combination of n variables. There are m constraints, each of which places an upper bound on a linear combination of the n variables. The goal is to maximize the value ...