Search results
Results from the WOW.Com Content Network
An endothermic process is a chemical or physical process that absorbs heat from its surroundings. [1] In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy H (or internal energy U) of the system. [2] In an endothermic process, the heat that a system absorbs is thermal energy transfer into the
Van 't Hoff plot for an endothermic reaction. For an endothermic reaction, heat is absorbed, making the net enthalpy change positive. Thus, according to the definition of the slope: =, When the reaction is endothermic, Δ r H > 0 (and the gas constant R > 0), so
Enthalpy of mixing can often be ignored in calculations for mixtures where other heat terms exist, or in cases where the mixture is ideal. [2] The sign convention is the same as for enthalpy of reaction: when the enthalpy of mixing is positive, mixing is endothermic, while negative enthalpy of mixing signifies exothermic mixing. In ideal ...
Enthalpy is the transfer of energy in a reaction (for chemical reactions, it is in the form of heat) and is the change in enthalpy. Δ H {\displaystyle \Delta H} is a state function, meaning that Δ H {\displaystyle \Delta H} is independent of processes occurring between initial and final states.
Hess's law states that the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or several steps, provided the initial and final states of the reactants and products are the same. Enthalpy is an extensive property, meaning that its value is proportional to the system size. [4]
For endothermic (heat-absorbing) processes, the change ΔH is a positive value; for exothermic (heat-releasing) processes it is negative. The enthalpy of an ideal gas is independent of its pressure or volume, and depends only on its temperature, which correlates to its thermal energy. Real gases at common temperatures and pressures often ...
The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made up of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent. An ideal solution has a null enthalpy of mixing.
Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. The subject commonly includes calculations of such quantities as heat capacity, heat of combustion, heat of formation, enthalpy, entropy, and free energy.