Search results
Results from the WOW.Com Content Network
Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set of a smooth function, and it is not necessary just to consider algebraic varieties. The definitions can be ...
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x -axis is a "double tangent." For affine and projective varieties , the singularities are the points where the Jacobian matrix has a rank which is lower than at other points of the variety.
The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n = 0 since the functions contain a multiplicative factor of x − a for n > 0.
As the notion of singular points is a purely local property, the above definition can be extended to cover the wider class of smooth mappings (functions from M to R n where all derivatives exist). Analysis of these singular points can be reduced to the algebraic variety case by considering the jets of the mapping.
A standard example of a singular function is the Cantor function, which is sometimes called the devil's staircase (a term also used for singular functions in general). There are, however, other functions that have been given that name. One is defined in terms of the circle map.
A key point is that every linear space contained in a smooth quadric has dimension at most half the dimension of the quadric. Moreover, when k is algebraically closed, this is an optimal bound, meaning that every smooth quadric of dimension n over k contains a linear subspace of dimension ⌊ / ⌋. [3]
Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.