enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.

  3. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set ⁠ f − 1 ( 0 ) {\displaystyle f^{-1}(0)} ⁠ of a smooth function , and it is not necessary just to consider ...

  4. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like cusps. For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at ...

  5. Singularity function - Wikipedia

    en.wikipedia.org/wiki/Singularity_function

    The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n = 0 since the functions contain a multiplicative factor of x − a for n > 0.

  6. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  7. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  8. Singular point of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_an...

    A plane curve defined by an implicit equation (,) =,where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.. The reason for this is that, in differential calculus, the tangent at the point (x 0, y 0) of such a curve is defined by the equation

  9. Algebraic curve - Wikipedia

    en.wikipedia.org/wiki/Algebraic_curve

    The study of the analytic structure of an algebraic curve in the neighborhood of a singular point provides accurate information of the topology of singularities. In fact, near a singular point, a real algebraic curve is the union of a finite number of branches that intersect only at the singular point and look either as a cusp or as a smooth curve.