enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set ⁠ ⁠ of a smooth function, and it is not necessary just to consider algebraic varieties. The definitions can be ...

  3. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    Branch points are generally the result of a multi-valued function, such as or ⁡ (), which are defined within a certain limited domain so that the function can be made single-valued within the domain. The cut is a line or curve excluded from the domain to introduce a technical separation between discontinuous values of the function.

  4. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  5. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...

  6. Singularity - Wikipedia

    en.wikipedia.org/wiki/Singularity

    Singular point of a curve, where the curve is not given by a smooth embedding of a parameter; Singular point of an algebraic variety, a point where an algebraic variety is not locally flat; Rational singularity

  7. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    The definitions for plane curves and implicitly-defined curves have been generalized by René Thom and Vladimir Arnold to curves defined by differentiable functions: a curve has a cusp at a point if there is a diffeomorphism of a neighborhood of the point in the ambient space, which maps the curve onto one of the above-defined cusps.

  8. Surface (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Surface_(mathematics)

    A singular point of an implicit surface (in ) is a point of the surface where the implicit equation holds and the three partial derivatives of its defining function are all zero. Therefore, the singular points are the solutions of a system of four equations in three indeterminates. As most such systems have no solution, many surfaces do not ...

  9. Singular point of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_an...

    A plane curve defined by an implicit equation (,) =,where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.. The reason for this is that, in differential calculus, the tangent at the point (x 0, y 0) of such a curve is defined by the equation