enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Crystallographic restriction theorem - Wikipedia

    en.wikipedia.org/wiki/Crystallographic...

    Thus 5-fold rotational symmetry cannot be eliminated by an argument missing either of those assumptions. A Penrose tiling of the whole (infinite) plane can only have exact 5-fold rotational symmetry (of the whole tiling) about a single point, however, whereas the 4-fold and 6-fold lattices have infinitely many centres of rotational symmetry.

  3. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals: implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its tiles ...

  4. Girih - Wikipedia

    en.wikipedia.org/wiki/Girih

    A periodic tiling of the plane is the regular repetition of a "unit cell", in the manner of a wallpaper, without any gaps. Such tilings can be seen as a two-dimensional crystal, and because of the crystallographic restriction theorem, the unit cell is restricted to a rotational symmetry of 2-fold, 3-fold, 4-fold, and 6-fold. It is therefore ...

  5. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    A "1-fold" symmetry is no symmetry (all objects look alike after a rotation of 360°). The notation for n-fold symmetry is C n or simply n. The actual symmetry group is specified by the point or axis of symmetry, together with the n. For each point or axis of symmetry, the abstract group type is cyclic group of order n, Z n.

  6. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions.

  7. Point groups in four dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_four...

    Four circles meet at each vertex. Each circle represents axes of 3-fold symmetry. The 600-cell edges projected onto a 3-sphere represent 72 great circles of H4 symmetry. Six circles meet at each vertex. Each circle represent axes of 5-fold symmetry. Direct subgroups of the reflective 4-dimensional point groups are:

  8. Braarudosphaera bigelowii - Wikipedia

    en.wikipedia.org/wiki/Braarudosphaera_bigelowii

    The family Braarudosphaeraceae consist of single-celled coastal phytoplanktonic algae with calcareous scales with five-fold symmetry, called pentaliths. With 12 sides, it has a regular dodecahedral structure, approximately 10 micrometers across. [2] [3] (A) SEM image of a cell of B. bigelowii surrounded by 12 pentaliths.

  9. Compound of dodecahedron and icosahedron - Wikipedia

    en.wikipedia.org/wiki/Compound_of_dodecahedron...

    It has icosahedral symmetry (I h) and the same vertex arrangement as a rhombic triacontahedron. This can be seen as the three-dimensional equivalent of the compound of two pentagons ({10/2} "decagram"); this series continues into the fourth dimension as the compound of 120-cell and 600-cell and into higher dimensions as compounds of hyperbolic ...