Search results
Results from the WOW.Com Content Network
The terms anode and cathode are not defined by the voltage polarity of electrodes, but are usually defined by the direction of current through the electrode. An anode usually is the electrode of a device through which conventional current (positive charge) flows into the device from an external circuit, while a cathode usually is the electrode through which conventional current flows out of ...
Old drawing of a chloralkali process plant (Edgewood, Maryland) The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [1] which are
Aluminum sacrificial anodes (light colored rectangular bars) mounted on a steel jacket structure. Zinc sacrificial anode (rounded object) screwed to the underside of the hull of a small boat. Cathodic protection (CP; / k æ ˈ θ ɒ d ɪ k / ⓘ) is a technique used to control the corrosion of a metal surface by making it the cathode of an ...
Simple scheme of the apparatus for electro-oxidation process. The set-up for performing an electro-oxidation treatment consists of an electrochemical cell.An external electric potential difference (aka voltage) is applied to the electrodes, resulting in the formation of reactive species, namely hydroxyl radicals, in the proximity of the electrode surface. [11]
Anodic protection (AP) otherwise referred to as Anodic Control is a technique to control the corrosion of a metal surface by making it the anode of an electrochemical cell and controlling the electrode potential in a zone where the metal is passive.
In such applications, organic solvents are used instead of water as the liquid medium. The organic solvents used are generally polar solvents such as alcohols and ketones. Ethanol, acetone, and methyl ethyl ketone are examples of solvents which have been reported as suitable candidates for use in electrophoretic deposition.
Corrosion requires an anode and cathode to take place. The anode is an element that loses electrons (reducing agent), thus oxidation always occurs in the anode, and the cathode is an element that gains electrons (oxidizing agent), thus reduction always occurs in the cathode. Corrosion occurs whenever there's a difference in oxidation potential.
The anode reaction depends on the material of the anode. Depending on the system it is possible to produce either CO or CO 2 or a mixture at the carbon anode: C + 2O 2− → CO 2 +4 e − C + O 2− → CO + 2 e −. However, if an inert anode is used, such as that of high density SnO 2, the discharge of the O 2− ions leads to the evolution ...