enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    The preprocessing pipeline used can often have large effects on the conclusions drawn from the downstream analysis. Thus, representation and quality of data is necessary before running any analysis. [2] Often, data preprocessing is the most important phase of a machine learning project, especially in computational biology. [3]

  3. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...

  4. Preprocessing - Wikipedia

    en.wikipedia.org/wiki/Preprocessing

    Preprocessing can refer to the following topics in computer science: Preprocessor , a program that processes its input data to produce output that is used as input to another program like a compiler Data pre-processing , used in machine learning and data mining to make input data easier to work with

  5. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature. treated for missing values, numerical attributes only, different percentages of anomalies, labels 1000+ files ARFF: Anomaly detection: 2016 (possibly updated with new datasets and/or results) [331] Campos et al.

  7. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).

  8. Weka (software) - Wikipedia

    en.wikipedia.org/wiki/Weka_(software)

    Neural Designer is a data mining software based on deep learning techniques written in C++. Orange is a similar open-source project for data mining, machine learning and visualization based on scikit-learn. RapidMiner is a commercial machine learning framework implemented in Java which integrates Weka. scikit-learn is a popular machine learning ...

  9. Automated machine learning - Wikipedia

    en.wikipedia.org/wiki/Automated_machine_learning

    In a typical machine learning application, practitioners have a set of input data points to be used for training. The raw data may not be in a form that all algorithms can be applied to. To make the data amenable for machine learning, an expert may have to apply appropriate data pre-processing , feature engineering , feature extraction , and ...