Search results
Results from the WOW.Com Content Network
A third hand on a smaller dial would further divide these into 10, which would be 1/100,000 day, or 864 milliseconds, slightly less than a whole second. He suggested the deciday and centiday be used together to represent the time of day, such as "4 and 5", "4/5", or simply "45".
To change a common fraction to a decimal, do a long division of the decimal representations of the numerator by the denominator (this is idiomatically also phrased as "divide the denominator into the numerator"), and round the answer to the desired accuracy. For example, to change 1 / 4 to a decimal, divide 1.00 by 4 (" 4 into 1.00 ...
In order to convert a rational number represented as a fraction into decimal form, one may use long division. For example, consider the rational number 5 / 74 : 0.0 675 74 ) 5.00000 4.44 560 518 420 370 500 etc. Observe that at each step we have a remainder; the successive remainders displayed above are 56, 42, 50.
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Convert and normalize the integer part into binary; Convert the fraction part using the following technique as shown here; Add the two results and adjust them to produce a proper final conversion; Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2 ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.