Search results
Results from the WOW.Com Content Network
It is the unique combination of amino acids that gives a protein its properties. In terms of surface chemistry, protein adsorption is a critical phenomenon that describes the aggregation of these molecules on the exterior of a material. The tendency for proteins to remain attached to a surface depends largely on the material properties such as ...
The adsorption sites (heavy dots) are equivalent and can have unit occupancy. Also, the adsorbates are immobile on the surface. The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes.
Protein adsorption is influenced by many surface properties such as surface wettability, surface chemical composition [42] and surface nanometre-scale morphology. [43] Surfactant adsorption is a similar phenomenon, but utilising surfactant molecules in the place of proteins. [44]
The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand. [1] [2] [nb 1] This equation is formally equivalent to the Langmuir isotherm. [3] Conversely, the Hill equation proper reflects the cellular or tissue response to the ligand: the physiological output of the system, such as muscle ...
The simplest molecular explanation for the exchange of proteins on a surface is the adsorption/desorption model. Here, proteins interact with the surface of a biomaterial and "stick" on the material through interactions made with the protein and the biomaterial surface. Once a protein has adsorbed onto the surface of a biomaterial, the protein ...
Activated carbon has strong affinity for many gases and has an adsorption cross section of 0.162 nm 2 for nitrogen adsorption at liquid-nitrogen temperature (77 K). BET theory can be applied to estimate the specific surface area of activated carbon from experimental data, demonstrating a large specific surface area, even around 3000 m 2 /g. [ 13 ]
The original formulation was for molecules adsorbing from the gas phase and the equation was later extended to adsorption from the liquid phase by comparison with molecular dynamics simulations. [2] For use in adsorption from liquids the equation is expressed based on solute density (molecules per volume) rather than the pressure.
Protein adsorption in milk processing is often used as a model for this type of adsorption in other situations. Milk is composed mainly of water, with less than 20% of suspended solids or dissolved proteins. Proteins make up only 3.6% of milk in total, and only 26% of the components that are not water. [13]