Search results
Results from the WOW.Com Content Network
In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. [1] [2] Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots. Examples of rooted graphs with some variants.
A root is a simple root if = or a multiple root if . Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily.
With one real and two complex roots, the three roots can be represented as points in the complex plane, as can the two roots of the cubic's derivative. There is an interesting geometrical relationship among all these roots. The points in the complex plane representing the three roots serve as the vertices of an isosceles triangle.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The tangent lines of x 3 − 2x + 2 at 0 and 1 intersect the x-axis at 1 and 0 respectively, illustrating why Newton's method oscillates between these values for some starting points. It is easy to find situations for which Newton's method oscillates endlessly between two distinct values.