enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Telomere - Wikipedia

    en.wikipedia.org/wiki/Telomere

    The average cell will divide between 50 and 70 times before cell death. As the cell divides the telomeres on the end of the chromosome get smaller. The Hayflick limit is the theoretical limit to the number of times a cell may divide until the telomere becomes so short that division is inhibited and the cell enters senescence.

  3. Telomeric repeat–containing RNA - Wikipedia

    en.wikipedia.org/wiki/Telomeric_repeat...

    In general, TERRA has been shown to be most abundant in cells with long telomeres, [2] [3] while cells with short telomeres express comparatively lower levels of transcript expression. There is also evidence that overexpression of TERRA in human cells can help promote telomere processing by inhibiting the 5'-3' exonuclease Exo1 through the Ku70 ...

  4. Telomerase - Wikipedia

    en.wikipedia.org/wiki/Telomerase

    The ability to maintain functional telomeres may be one mechanism that allows cancer cells to grow in vitro for decades. [54] Telomerase activity is necessary to preserve many cancer types and is inactive in somatic cells, creating the possibility that telomerase inhibition could selectively repress cancer cell growth with minimal side effects ...

  5. Hayflick limit - Wikipedia

    en.wikipedia.org/wiki/Hayflick_limit

    The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage is known as cellular senescence.

  6. Relationship between telomeres and longevity - Wikipedia

    en.wikipedia.org/wiki/Relationship_between...

    Telomeres at the end of a chromosome. The relationship between telomeres and longevity and changing the length of telomeres is one of the new fields of research on increasing human lifespan and even human immortality. [1] [2] Telomeres are sequences at the ends of chromosomes that shorten with each cell division and determine the lifespan of ...

  7. Mega-telomere - Wikipedia

    en.wikipedia.org/wiki/Mega-telomere

    A mega-telomere (also known as an ultra-long telomere or a class III telomere), is an extremely long telomere sequence that sits on the end of chromosomes and prevents the loss of genetic information during cell replication. Like regular telomeres, mega-telomeres are made of a repetitive sequence of DNA and associated proteins, and are located ...

  8. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.

  9. WI-38 - Wikipedia

    en.wikipedia.org/wiki/WI-38

    The WI-38 cell line stemmed from earlier work by Hayflick growing human cell cultures. [2]In the early 1960s, Hayflick and his colleague Paul Moorhead at the Wistar Institute in Philadelphia, Pennsylvania discovered that when normal human cells were stored in a freezer, the cells remembered the doubling level at which they were stored and, when reconstituted, began to divide from that level to ...