Ad
related to: taylor's theorem for 2 variables practice test worksheet 1kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [ 3 ] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis .
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}
As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.
The notes that Marx took have been collected into four independent treatises: On the Concept of the Derived Function, On the Differential, On the History of Differential Calculus, and Taylor's Theorem, MacLaurin's Theorem, and Lagrange's Theory of Derived Functions, along with several notes, additional drafts, and supplements to these four ...
When g is applied to a random variable such as the mean, the delta method would tend to work better as the sample size increases, since it would help reduce the variance, and thus the taylor approximation would be applied to a smaller range of the function g at the point of interest.
This page was last edited on 14 November 2024, at 22:02 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In probability theory, Hoeffding's lemma is an inequality that bounds the moment-generating function of any bounded random variable, [1] implying that such variables are subgaussian. It is named after the Finnish–American mathematical statistician Wassily Hoeffding. The proof of Hoeffding's lemma uses Taylor's theorem and Jensen's inequality.
Ad
related to: taylor's theorem for 2 variables practice test worksheet 1kutasoftware.com has been visited by 10K+ users in the past month