Search results
Results from the WOW.Com Content Network
The converse of this implication leads to functions that are order-reflecting, i.e. functions f as above for which f(a) ≤ f(b) implies a ≤ b. On the other hand, a function may also be order-reversing or antitone, if a ≤ b implies f(a) ≥ f(b). An order-embedding is a function f between orders that is both order-preserving and order ...
Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.
The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system. [ citation needed ] In condensed matter physics , systems typically are ordered at low temperatures ; upon heating, they undergo one or several phase transitions into less ordered states.
Given a set and a partial order relation, typically the non-strict partial order , we may uniquely extend our notation to define four partial order relations , <,, and >, where is a non-strict partial order relation on , < is the associated strict partial order relation on (the irreflexive kernel of ), is the dual of , and > is the dual of <.
In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation. [1]
A Fermi problem (or Fermi quiz, Fermi question, Fermi estimate), also known as an order-of-magnitude problem (or order-of-magnitude estimate, order estimation), is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.