Search results
Results from the WOW.Com Content Network
Water chemistry analysis is often the groundwork of studies of water quality, pollution, hydrology and geothermal waters. Analytical methods routinely used can detect and measure all the natural elements and their inorganic compounds and a very wide range of organic chemical species using methods such as gas chromatography and mass spectrometry.
The analyte is a gas or liquid spray and ionization is accomplished using an atmospheric pressure corona discharge. This ionization method is often coupled with high performance liquid chromatography where the mobile phase containing eluting analyte sprayed with high flow rates of nitrogen or helium and the aerosol spray is subjected to a ...
Since then, IMS cells have been included in various configurations of mass spectrometers, gas chromatographs, and high-performance liquid chromatography instruments. IMS is a method used in multiple contexts, and the breadth of applications that it can support, in addition to its capabilities, is continually being expanded.
Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. [ 1 ] [ 2 ] [ 3 ] The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in recent years are done using the ...
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
Liquid chromatography (LC) is a separation technique in which the mobile phase is a liquid. It can be carried out either in a column or a plane. Present day liquid chromatography that generally utilizes very small packing particles and a relatively high pressure is referred to as high-performance liquid chromatography.
The evaporated mobile phase of LC acts as the ionization gas and reactant ions. If water is the only solvent in the evaporated mobile phase, the excited nitrogen molecular ions N 4 +* would react with H 2 O molecules to produce water cluster ions H + (H 2 O) n. [10] Then, analyte molecules M are protonated by the water cluster ions.
As the sample is carried into the detector by the carrier gas, electron-absorbing analyte molecules capture electrons and thereby reduce the current between the collector anode and a cathode. Over a wide range of concentrations the rate of electron capture is proportional to the analyte concentration.