enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 ⁡ 3 ...

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    For fast Fourier transforms (FFTs) (or any linear transformation) the complex multiplies are by constant coefficients c + di (called twiddle factors in FFTs), in which case two of the additions (d−c and c+d) can be precomputed. Hence, only three multiplies and three adds are required. [29]

  4. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007. It is asymptotically faster than older methods such as Karatsuba and Toom–Cook multiplication , and starts to outperform them in practice for numbers beyond about 10,000 to 100,000 decimal digits. [ 2 ]

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...

  6. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/.../Matrix_multiplication_algorithm

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  7. Victor Pan - Wikipedia

    en.wikipedia.org/wiki/Victor_Pan

    His 1982 algorithm still held the record in 2020 for the fastest "practically useful" matrix multiplication algorithm (i.e., with a small base size and manageable hidden constants). [4]

  8. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices. The Strassen algorithm is slower than the fastest known algorithms for extremely large matrices, but such galactic algorithms are not useful in practice, as ...

  9. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...