enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .

  3. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    The long orbital period of Neptune means that the seasons last for forty Earth years. [109] Its sidereal rotation period (day) is roughly 16.11 hours. [ 12 ] Because its axial tilt is comparable to Earth's, the variation in the length of its day over the course of its long year is not any more extreme.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1.; The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit.

  5. Moons of Neptune - Wikipedia

    en.wikipedia.org/wiki/Moons_of_Neptune

    All but the outer two are within Neptune-synchronous orbit (Neptune's rotational period is 0.6713 day or 16 hours [20]) and thus are being tidally decelerated. Naiad, the closest regular moon, is also the second smallest among the inner moons (following the discovery of Hippocamp), whereas Proteus is the largest regular moon and the second ...

  6. Apparent retrograde motion - Wikipedia

    en.wikipedia.org/wiki/Apparent_retrograde_motion

    On both occasions, Galileo mistook Neptune for a fixed star when it appeared very close—in conjunction—to Jupiter in the night sky, hence, he is not credited with Neptune's discovery. During the period of his first observation in December 1612, Neptune was stationary in the sky because it had just turned retrograde that very day.

  7. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface temperature: K: 5,778 Mean coronal temperature [5] K: 1–2 × 10 6: Photospheric composition H, He, O, C, Fe, S

  8. Resonant trans-Neptunian object - Wikipedia

    en.wikipedia.org/wiki/Resonant_trans-Neptunian...

    In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune.The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.

  9. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force.. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova, [1] [2] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.