Search results
Results from the WOW.Com Content Network
[8] [9] [verification needed] Cramer's rule can also be numerically unstable even for 2×2 systems. [10] However, Cramer's rule can be implemented with the same complexity as Gaussian elimination, [11] [12] (consistently requires twice as many arithmetic operations and has the same numerical stability when the same permutation matrices are ...
If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...
In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers : there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule ).
In this case, the solution is given by Cramer's rule: = () =,,, …, where is the matrix formed by replacing the -th column of by the column vector . This follows immediately by column expansion of the determinant, i.e.
Matrix theory is the branch of mathematics that focuses on the study of matrices. ... Determinants can be used to solve linear systems using Cramer's rule, ...
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
Though Cramer's rule is important theoretically, it has little practical value for large matrices, since the computation of large determinants is somewhat cumbersome. (Indeed, large determinants are most easily computed using row reduction.)
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.