Search results
Results from the WOW.Com Content Network
Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
The Cramér–Rao bound is stated in this section for several increasingly general cases, beginning with the case in which the parameter is a scalar and its estimator is unbiased.
In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter. [1] As a type of static analysis it compares two different equilibrium states, after the process of adjustment (if any). It does not study the motion towards equilibrium, nor the process of ...
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
It may be viewed as the association between two variables as a percentage of their maximum possible variation. φ c 2 is the mean square canonical correlation between the variables. [citation needed] In the case of a 2 × 2 contingency table Cramér's V is equal to the absolute value of Phi coefficient.
In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function. [1]: 198–203