Search results
Results from the WOW.Com Content Network
Whereas the concept of water activity is widely known and utilized in the applied biosciences, its complement—the protein activity which quantitates protein–protein interactions—is much less familiar to bioscientists as it is more difficult to determine in dilute solutions of proteins; protein activity is also much harder to determine for ...
The favoured model for the enzyme–substrate interaction is the induced fit model. [53] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").
Regulation of gene expression by a hormone receptor Diagram showing at which stages in the DNA-mRNA-protein pathway expression can be controlled. Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA).
The group hypothesized that histone proteins modified by acetyl groups added negative charges to the positive lysines, and thus, reduced the interaction between DNA and histones. [15] Histone modification is now considered a major regulatory mechanism that is involved in many different stages of genetic functions. [ 16 ]
The model is used in a variety of biochemical situations other than enzyme-substrate interaction, including antigen–antibody binding, DNA–DNA hybridization, and protein–protein interaction. [ 17 ] [ 18 ] It can be used to characterize a generic biochemical reaction, in the same way that the Langmuir equation can be used to model generic ...
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
A ternary complex is a protein complex containing three different molecules that are bound together. In structural biology, ternary complex can also be used to describe a crystal containing a protein with two small molecules bound, such as a cofactor and a substrate; or a complex formed between two proteins and a single substrate. [1]