Search results
Results from the WOW.Com Content Network
Whereas the concept of water activity is widely known and utilized in the applied biosciences, its complement—the protein activity which quantitates protein–protein interactions—is much less familiar to bioscientists as it is more difficult to determine in dilute solutions of proteins; protein activity is also much harder to determine for ...
The group hypothesized that histone proteins modified by acetyl groups added negative charges to the positive lysines, and thus, reduced the interaction between DNA and histones. [15] Histone modification is now considered a major regulatory mechanism that is involved in many different stages of genetic functions. [ 16 ]
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").
Enzyme induction is a process in which a molecule (e.g. a drug) induces (i.e. initiates or enhances) the expression of an enzyme. Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works.
The favoured model for the enzyme–substrate interaction is the induced fit model. [53] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
Regulation of gene expression by a hormone receptor Diagram showing at which stages in the DNA-mRNA-protein pathway expression can be controlled. Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA).
Protein phosphorylation is a reversible post-translational modification of proteins. In eukaryotes, protein phosphorylation functions in cell signaling, gene expression, and differentiation. It is also involved in DNA replication during the cell cycle, and the mechanisms that cope with stress-induced replication blocks.
Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. [2] Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and