Search results
Results from the WOW.Com Content Network
Sodium aluminate is also formed by the action of sodium hydroxide on elemental aluminium which is an amphoteric metal. The reaction is highly exothermic once established and is accompanied by the rapid evolution of hydrogen gas. The reaction is sometimes written as: 2Al + 2NaOH + 2H 2 O → 2NaAlO 2 + 3H 2
In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% sodium hydroxide solution, [25] causing pressurization of the contents and damage to tankers. The pressurization is due to the hydrogen gas which is produced in the reaction between sodium hydroxide and aluminium: 2 Al + 2 NaOH + 6 H 2 O → 2 Na[Al(OH) 4] + 3 H 2
Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. Al 2 O 3 + 6 HF → 2 AlF 3 + 3 H 2 O Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 NaAl(OH) 4 (sodium aluminate)
In hot concentrated hydrochloric acid, aluminium reacts with water with evolution of hydrogen, and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates—protective passivation under these conditions is negligible. [9] The reaction with aqueous alkali is often written: [2] Al + NaOH + H 2 O → NaAlO 2 ...
The reaction between sodium hydroxide and some metals is also hazardous. Aluminium, magnesium, zinc, tin, chromium, brass and bronze all react with lye to produce hydrogen gas. Since hydrogen is flammable, mixing a large quantity of lye with aluminium could result in an explosion. Both the potassium and sodium forms are able to dissolve copper.
The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer.Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al 2 O 3), the rest being a mixture of silica, various iron oxides, and titanium dioxide. [1]
This gel crystallizes with time. Aluminium hydroxide gels can be dehydrated (e.g. using water-miscible non-aqueous solvents like ethanol) to form an amorphous aluminium hydroxide powder, which is readily soluble in acids. Heating converts it to activated aluminas, which are used as desiccants, adsorbent in gas purification, and catalyst ...
The Hall–Héroult process is the major industrial process for smelting aluminium.It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite and electrolyzing the molten salt bath, typically in a purpose-built cell.