Search results
Results from the WOW.Com Content Network
Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib(n), which returns the nth Fibonacci number, is defined with the recursion equations =, =,
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
In this case the tree function calls the forest function by single recursion, but the forest function calls the tree function by multiple recursion. Using the Standard ML datatype above, the size of a tree (number of nodes) can be computed via the following mutually recursive functions: [5]
The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division , the factorial and exponential function , and the function which returns the n th prime are all primitive recursive. [ 1 ]
Because fixed-point combinators can be used to implement recursion, it is possible to use them to describe specific types of recursive computations, such as those in fixed-point iteration, iterative methods, recursive join in relational databases, data-flow analysis, FIRST and FOLLOW sets of non-terminals in a context-free grammar, transitive ...