Search results
Results from the WOW.Com Content Network
The degree of dissociation in gases is denoted by the symbol α, where α refers to the percentage of gas molecules which dissociate. Various relationships between K p and α exist depending on the stoichiometry of the equation. The example of dinitrogen tetroxide (N 2 O 4) dissociating to nitrogen dioxide (NO 2) will be taken.
Sieverts' law can be readily rationalized by considering the reaction of dissolution of the gas in the metal, which involves dissociation of the molecule of the gas. For example, for nitrogen: N 2 (molecular gas) ⇌ 2 N (dissolved atoms) For the above reaction, the equilibrium constant is
The dissociation involves cleaving of the molecular bonds in the adsorbate, and formation of new bonds with the substrate. Breaking the atomic bonds of the dissociating molecule requires a large amount of energy, thus dissociative adsorption is an example of chemisorption, where strong adsorbate-substrate bonds are created. [1]
A particular brand of gas-surface chemisorption is the dissociation of diatomic gas molecules, such as hydrogen, oxygen, and nitrogen. One model used to describe the process is precursor-mediation. The absorbed molecule is adsorbed onto a surface into a precursor state. The molecule then diffuses across the surface to the chemisorption sites.
In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution. An example where Henry's law is at play is the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression, going to decompression sickness.
The original dissociation curves from Bohr's experiments in the first description of the Bohr effect, showing a decrease in oxygen affinity as the partial pressure of carbon dioxide increases. This is also one of the first examples of cooperative binding. X-axis: oxygen partial pressure in mmHg, Y-axis % oxy-hemoglobin.
Drifting smoke particles indicate the movement of the surrounding gas.. Gas is one of the four fundamental states of matter.The others are solid, liquid, and plasma. [1] A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide).
Bond energy (BE) is the average of all bond-dissociation energies of a single type of bond in a given molecule. [7] The bond-dissociation energies of several different bonds of the same type can vary even within a single molecule. For example, a water molecule is composed of two O–H bonds bonded as H