enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    Some semi-magic numbers have been found, notably Z = 40, which gives the nuclear shell filling for the various elements; 16 may also be a magic number. [3] To get these numbers, the nuclear shell model starts with an average potential with a shape somewhere between the square well and the harmonic oscillator. To this potential, a spin-orbit ...

  3. Nilsson model - Wikipedia

    en.wikipedia.org/wiki/Nilsson_model

    The Nilsson model is a nuclear shell model treating the atomic nucleus as a deformed sphere. In 1953, the first experimental examples were found of rotational bands in nuclei, with their energy levels following the same J (J+1) pattern of energies as in rotating molecules. Quantum mechanically, it is impossible to have a collective rotation of ...

  4. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    In the shell model for the nucleus, magic numbers are the numbers of nucleons at which a shell is filled. For instance, the magic number 8 occurs when the 1s 1/2, 1p 3/2, 1p 1/2 energy levels are filled, as there is a large energy gap between the 1p 1/2 and the next highest 1d 5/2 energy levels.

  5. Island of stability - Wikipedia

    en.wikipedia.org/wiki/Island_of_stability

    This theory of a nuclear shell model originates in the 1930s, but it was not until 1949 that German physicists Maria Goeppert Mayer and Johannes Hans Daniel Jensen et al. independently devised the correct formulation. [26] The numbers of nucleons for which shells are filled are called magic numbers. Magic numbers of 2, 8, 20, 28, 50, 82 and 126 ...

  6. Nuclear magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_moment

    According to the shell model, protons or neutrons tend to form pairs of opposite total angular momentum.Therefore, the magnetic moment of a nucleus with even numbers of each protons and neutrons is zero, while that of a nucleus with an odd number of protons and even number of neutrons (or vice versa) will have to be that of the remaining unpaired nucleon.

  7. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model is a relatively primitive model of the hydrogen atom, compared to the valence shell model. As a theory, it can be derived as a first-order approximation of the hydrogen atom using the broader and much more accurate quantum mechanics and thus may be considered to be an obsolete scientific theory.

  8. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    Electron shell. In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom 's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from ...

  9. Woods–Saxon potential - Wikipedia

    en.wikipedia.org/wiki/Woods–Saxon_potential

    Woods–Saxon potential for A = 50, relative to V 0 with a = 0.5 fm and =. The Woods–Saxon potential is a mean field potential for the nucleons (protons and neutrons) inside the atomic nucleus, which is used to describe approximately the forces applied on each nucleon, in the nuclear shell model for the structure of the nucleus.