Search results
Results from the WOW.Com Content Network
Visual acuity depends on optical and neural factors. Optical factors of the eye influence the sharpness of an image on its retina. Neural factors include the health and functioning of the retina, of the neural pathways to the brain, and of the interpretative faculty of the brain. [1]
An example of the Landolt C eye chart (also known as the Japanese eye chart.). Numerous types of eye charts exist and are used in various situations. For example, the Snellen chart is designed for use at 6 meters or 20 feet, and is thus appropriate for testing distance vision, while the ETDRS chart is designed for use at 4 meters. [16]
For an optical system in air the effective focal length, front focal length, and rear focal length are all the same and may be called simply "focal length". Sketch of human eye showing rear focal length f ′ and EFL. For an optical system in a medium other than air or vacuum, the front and rear focal lengths are equal to the EFL times the ...
The human eye is an organ which reacts to light for several purposes. As a conscious sense organ, the eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth. The human eye can distinguish about 10 million colors. [3]
The f-number of the human eye varies from about f /8.3 in a very brightly lit place to about f /2.1 in the dark. [17] Computing the focal length requires that the light-refracting properties of the liquids in the eye be taken into account. Treating the eye as an ordinary air-filled camera and lens results in an incorrect focal length and f-number.
The photography term "one f-stop" refers to a factor of √ 2 (approx. 1.41) change in f-number which corresponds to a √ 2 change in aperture diameter, which in turn corresponds to a factor of 2 change in light intensity (by a factor 2 change in the aperture area). Aperture priority is a semi-automatic shooting mode used in cameras.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Distance PD is the separation between the visual axes of the eyes in their primary position, as the subject fixates on an infinitely distant object. [2] Near PD is the separation between the visual axes of the eyes, at the plane of the spectacle lenses, as the subject fixates on a near object at the intended working distance. [3]